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A Obijective: analysis of MSLB accidents

To

VVER1000 reactor and the Kozloduy-6 coolant mixing
experiments

PIRT analysis and separate effect validation tests
The numerical model

Quantitative analysis of coolant mixing in VVER1000 reactor
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Qualification of TrioCFD for simulating MSLB accidents

In nuclear reactors

Main Steam Line Break
scenario (MSLB)

Steam line
isolation
valve SIV
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Break in the main steam-line of a SG

¥

Depressurization of affected SG
‘ Shutdown of the reactor

Isolation of affected SG by closing SIV

¥

Increased cooling of SG secondary side

¥

Transport of cold water in the reactor core

Negative temperature
‘v dependency of reactivity

Possible return to criticality
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Validation of TrioCFD for fluid mixing in a full scale

VVER1000 reactor pressure vessel

A A MSLB accident was simulated by a coolant mixing experiment during the
commissioning tests of the unit 6 of the KOZLODUY power plant
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A This coolant mixing experiment was part of an OECD/NEA benchmark of
2003-2006 and CEA has access to the data
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Design of the reactor A 4 loops with non-uniform azimuthal

| T distribution of cold leg nozzles (within
" - _/ Perforated Core Barrel fabrlcatlon tOIerance)
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E 17 || A Perforated core barrel in the upper
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H Downcomer
3 Core barrel

Support Column
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Fuel Support Column
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Elliptic RPV bottom

| Perforated Core Barrel l

Narrowing gap
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CZaden vVER1000 coolant mixing experiment

A Initial state Measured relative assembly
A 4 MCP and 4 SG are in operation temperature rise in the initial state

A Thermal power: 281MW i.e. 9.36% PN . oo oo, o e Hens A
A Relative temperature rise in the core o] o g g s ] gl g [ T e
was calculated from measured cold leg smpii) | D g
and 95 assembly outlet temperatures rOB0000E0E0:
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A Transient
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A Temperature rise in loop n°1: 13.6°C wJelallE e ] o
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A Measured core outlet temperature y hEhas € e
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stabilizes about 1800s after closing . .
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A Standard k-e model to evaluate n;:

A Boundary conditions

A Boussinesq hypothesis to calculate the Reynolds stresses:
4 Y, +&8 2 |

eZ
-c,s  p=-
eZk

W,
HX;

A Dirichlet conditions at inlets of 4 cold legs

A Dirichlet conditions at outlets of 3 hot legs

A Von Neumann condition at one of hot leg outlet

A Adiabatic walls and logarithmic wall functions
at all solid structures

Loop Velocity (m/s) Temperature (3 )
no. Cold leg | Hotleg | Cold leg Hot leg
1 10.71 -10.71 282.2 282.2
2 10.69 -10.69 269.9 269.9
3 10.71 -10.71 269.0 269.0

4 10.89 P=0 269.2 dT/dn=0
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A PIRT (Phenomena Identification and Ranking Table) analysis:
A To bring into focus dominant physical phenomena
A To define single effect validation test cases

A For VVER1000 Coolant Mixing Transient:
A Figure of merit: Pressure drop
A Dimensionless number: Re number
A Aimed precision of simulation: 10%

Separate effect test | Physical phenomena | Reynolds Number
17 Downcomer Channel flow 31.0-106
2 1 Perforated plates Flow through orifices 4.5-106
31 Cold leg nozzles Baffle impact 70.0 - 106
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Geometry of channel flow model Friction pressure loss in channels (Re>4000):

P
(rw?/2) Do(Q.8logRe 1.64)

Wo Do
n

Re=

Logarithmic Velocity profile

*[ 7 Pressure gradient reference value: 0.370 kPa/m
A | Grid size y+ Pressure gradient | Relative error
| ! (mm) (kPa/m) (%)

7 3772 0.336 7.69

3 1563 0.320 12.08

1 509 0.368 1.09

A Consequence for the reactor scale calculation:
A A maximum error of 10% is intended
A Avy* value of 1000 is the target for the mesh refinement in tubes and channels
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Geometry of 1 orifice- and 4 orifice model Pressure drop coefficient for orifices:

& %

mfi, Tlkl whh

DP é:‘ a
=a0.58-
rw21/2 A 5?

Reference value: 80.798 kPa (one orifice) and 91.16 kPa (four orifices)

Mesh size of Pressure loss (kPa) of Relative Pressure loss (kPa) of Relative
orifice (mm) one orifice model error (%) four orifice model error (%)
8 135,2 67.33 - -
6 114,5 41.71 - -
5 103,4 27.9 - -
4 89,43 10.62 101,1 10.9
3 83,95 3.9 96,56 5.9

A Consequence for the reactor scale calculation:
A A maximum error of 10% is intended

A The orifices should be meshed with mesh sizes of at least 4mm
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Geometry of cold leg nozzle model Pressure drop coefficient of the baffle impact:

= Inlet velocity -
10.71m/s g P _,h
r =f(=—,=)
R/ Y rw;/2 D, D,
e— — r h
“ + =03 —=02
%g\ b D,
g \HIIS
¥ Pressure
outlet Reference value: 21.58 kPa
Mesh size Pressure loss Relative error
(mm) (kPa) (%)
20 pure tetra 9.676 50.50
12 pure tetra 8.988 58.35
10 tetra with prism layers 8.748 59.46

A Consequence for the reactor scale calculation:
A Non-isotropic turbulence is not correctly calculated by k-e model
A Errors are expected for the flow in the cold leg nozzles
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Validation domain of separate effect studies, VVER1000 coolant mixing
experiment and further reactor applications

Channels

Application

Re

Baffle Perforated
impact plates

Weaknesses of the approach:

A More separate test cases are needed to
validate other phenomena than DP,

A More integral tests are needed coupling
two or three physical phenomena.
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L Separate effect test
Integral effect test

Separate Effect studies -> PIRT

Integral Effect study -> VVER1000
experiment

Applications -> MSLB scenario

Strengths of the approach:

A Each separate effect test covers
one important physical
phenomenon of the application
domain,

A One integral test covers all the
dominant physical phenomena of
the application domain,

A The Re numbers of separate
effect studies and integral test are
consistent with the application
domain.
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Realized integral tests oriented to other physical phenomena than DP

ROCOM test facility

1:5 scale primary circuit
of a KONVOI reactor
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Main
inconvenience:

It is not possible to
respect the reactor
scale Reynolds
Number in small
scale experiments.
A Re reactor
1.000.000
A Re experiment
50.000

PAGE 12



(Laden Tetra meshing of the flow domain

50 million meshes (ICEM) 350 million meshes (TrioCFD)

A Explicit modelling of
important structures:
A perforated plate,
A core support columns,
A upper plenum (guide
tubes, perforated

walls)
A 1sotropic refinement by TrioCFD A CPU on TGCC CURIE:
A 1 tetrahedral element is cut into 8 new ones A 50 million meshes

1024 processor cores
36h execution time

A 350 million meshes
9984 processor cores
72h execution time
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